Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 37(12): 110143, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34919799

ABSTRACT

The need for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) next-generation vaccines has been highlighted by the rise of variants of concern (VoCs) and the long-term threat of emerging coronaviruses. Here, we design and characterize four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of the prefusion SARS-CoV-2 spike (S), S1, and receptor-binding domain (RBD). These immunogens induce robust S binding, ACE2 inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2. A spike-ferritin nanoparticle (SpFN) vaccine elicits neutralizing titers (ID50 > 10,000) following a single immunization, whereas RBD-ferritin nanoparticle (RFN) immunogens elicit similar responses after two immunizations and also show durable and potent neutralization against circulating VoCs. Passive transfer of immunoglobulin G (IgG) purified from SpFN- or RFN-immunized mice protects K18-hACE2 transgenic mice from a lethal SARS-CoV-2 challenge. Furthermore, S-domain nanoparticle immunization elicits ACE2-blocking activity and ID50 neutralizing antibody titers >2,000 against SARS-CoV-1, highlighting the broad response elicited by these immunogens.

2.
bioRxiv ; 2021 May 10.
Article in English | MEDLINE | ID: mdl-34013273

ABSTRACT

The need for SARS-CoV-2 next-generation vaccines has been highlighted by the rise of variants of concern (VoC) and the long-term threat of other coronaviruses. Here, we designed and characterized four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of prefusion Spike (S), S1 and RBD. These immunogens induced robust S-binding, ACE2-inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2 in mice. A Spike-ferritin nanoparticle (SpFN) vaccine elicited neutralizing titers more than 20-fold higher than convalescent donor serum, following a single immunization, while RBD-Ferritin nanoparticle (RFN) immunogens elicited similar responses after two immunizations. Passive transfer of IgG purified from SpFN- or RFN-immunized mice protected K18-hACE2 transgenic mice from a lethal SARS-CoV-2 virus challenge. Furthermore, SpFN- and RFN-immunization elicited ACE2 blocking activity and neutralizing ID50 antibody titers >2,000 against SARS-CoV-1, along with high magnitude neutralizing titers against major VoC. These results provide design strategies for pan-coronavirus vaccine development. HIGHLIGHTS: Iterative structure-based design of four Spike-domain Ferritin nanoparticle classes of immunogensSpFN-ALFQ and RFN-ALFQ immunization elicits potent neutralizing activity against SARS-CoV-2, variants of concern, and SARS-CoV-1Passively transferred IgG from immunized C57BL/6 mice protects K18-hACE2 mice from lethal SARS-CoV-2 challenge.

3.
Viral Immunol ; 22(1): 67-72, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19210230

ABSTRACT

Herpesviruses are widely disseminated in the population and establish lifelong latency, which is associated with a variety of pathological consequences. A recent report showed that mice latently infected with either murine gamma-herpesvirus-68 (gammaHV68) or murine cytomegalovirus (mCMV), mouse pathogens genetically similar to the human herpesviruses, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, and cytomegalovirus, had enhanced resistance to subsequent bacterial infection, suggesting protective as well as deleterious effects of latency. Here we confirm that latent gammaHV68 infection confers protection against subsequent infection with Listeria monocytogenes. However, the effect is transient, lasting only a few months.


Subject(s)
Gammaherpesvirinae/physiology , Herpesviridae Infections/complications , Listeria monocytogenes/pathogenicity , Listeriosis/complications , Listeriosis/prevention & control , Virus Latency , 3T3 Cells , Animals , Female , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Listeriosis/immunology , Listeriosis/microbiology , Mice , Mice, Inbred C57BL , Rhadinovirus
SELECTION OF CITATIONS
SEARCH DETAIL
...